

JASMIN-CEMS: Big Data and Compute for Environmental Science

Victoria Bennett^{1,3}, Philip Kershaw^{1,3},Matt Pritchard¹, Jonathan Churchill², Cristina Del Cano Novales², Martin Juckes^{1,4}, Stephen Pascoe^{1,4}, Sam Pepler^{1,4}, Ag Stephens^{1,4}, Bryan Lawrence^{1,4,6}

Centre for Environmental Data Archival, RAL Space, STFC Rutherford Appleton Laboratory, UK; 2. Scientific Computing Department, STFC Rutherford Appleton Laboratory, UK; 3. National Centre for Earth Observation, UK; 4. National Centre for Atmospheric Science, UK; 5. Remote Sensing Group, RAL Space, STFC Rutherford Appleton Laboratory, UK; 6. University of Reading, UK

VICTORIA Definett
CEDA, Centre for Environmental Data Archival, STFC

Outline

- Some background
- What is JASMIN, and CEMS
- Facts and figures
- JASMIN operations, and evolution
- Two example science projects

Climate, Environment & Monitoring from Space

Background: CEDA

Centre for Environmental Data Archival

"to support environmental science, further environmental data archival practices, and develop and deploy new technologies to enhance access to data"

→ Curation & Facilitation

Centre for Environmental Data Archival

Project	Туре	Data Volume (Petabytes)
NEODC	Earth Observation	0.9
BADC	Atmospheric Science	0.8
CMIP5	Climate Model	1.2
	Total	2.9

- > 300 datasets
- 144 million files
- 23,000 registered users

CEDA Evolution

Data growth at STFC

The light blue line is the total of all the data stored on tape in SCD.

The green line is the LHC Tier 1 data on tape.

The dark blue line is the data stored on disk in JASMIN.

JASMIN & CEMS: Big Data Facilities

- JASMIN (super data cluster)
 - Storage and services
 - Scientific computation
 - Access to high volume and complex data
- CEMS: Climate, Environment and Monitoring from Space
 - EO data and services
 - Academic commercial partnership

JASMIN

- What have we got:
 - ~16.4 PB fast parallel disk storage & equivalent in near-line tape
 - > 4,000 compute cores
- Four services provided to the community:
 - Storage (disk and tape)
 - Batch computing ("Lotus")
 - Hosted computing
 - Cloud computing

What are people using JASMIN-CEMS for?

- Data collaboration share, process and disseminate;
- Processing analyse own or third-party data;
- Running models port, develop, share and run models;
- Data/modelling services explore, develop and deploy services to provide new interfaces to end-users;
- Cloud tools access to tools that allow creation of virtual servers and allocation of storage resources – for novel research/applications/tools

Activities with a research focus

JASMIN Operations

- ~600 JASMIN users
- 90 projects
- 5.2 PB allocated as Group Workspace; 3 PB CEDA archives
- Over 2 million processing jobs

JASMIN "bladesets" usage October 2014.

Blue: allocated but not yet used.

Red: used.

Green: as yet unallocated

JASMIN Analysis Platform (JAP)

Multi-node infrastructure requires a way to install tools quickly and consistently

The community needs a consistent platform where ever they need them.

Users need help migrating analysis to JASMIN.

JAP provides RPMs and pre-built images based on CentOS

http://proj.badc.rl.ac.uk/cedaservices/wiki/JASMIN/AnalysisPlatform

JASMIN Evolution

Phase 1:

Storage and batch compute – excellent results for first users..

But "long tail" of user community who are less expert users of e.g. the Linux command line and high performance computing

-> New cloud services to support much wider community

JASMIN Cloud Architecture

Group Work Spaces and hosted processing in the Managed Cloud: direct access to archive filesystem and Lotus batch processing First projects underway in the Unmanaged Cloud

JASMIN Cloud Architecture

Example EO Science projects using JASMIN-CEMS

National Centre for Earth Observation
NATURAL ENVIRONMENT RESEARCH COUNCIL

LSPACE
Observation and Atmospheric Science

WWW.QA4ECV.eu

JASMIN-CEMS for global land surface products

- Objective 1: Re-project BRDF files from SIN-coordinates to lat/lon
 - Challenge: huge number of polygons to be spatiality indexed and processed. This process requires massive RAM and usually takes a very long time!
- Objective 2: Create specific albedo products for computation of 8-daily LAI/fAPAR between 2002 and 2011 at 3 different resolutions: 1km, 5km and 25km
 - Challenge: Upscale big data BRDF (50TB) from 1km to 5km and 25km using energy conservation method: This process is extremely time consuming!
- Solution: Cloud-computing system in JASMIN-CEMS (~100 times faster than 224-core in house linux cluster)
- Also use Science DMZ for data transfers from NASA: achieved rates up to 28 TB/day

National Centre for Earth Observation
NATURAL ENVIRONMENT RESEARCH COUNCIL

ALSPACE
10 Observation and Atmospheric Science

WWW.QA4ECV.eu

Example of 8-daily Global LAI derived from GlobAlbedo for 10 years using combined processing on CEMS and FastOpt Hamburg

ESA OPTIRAD Project

- Developing a Collaborative Research
 Environment for land data assimilation
 - a dedicated software environment for the scientific community to generate products from raw EO data
 - compute intensive assimilation algorithms with high memory demands
- Using iPython Notebook on the CEMS Unmanaged cloud

Further info

JASMIN

http://www.jasmin.ac.uk

Centre for Environmental Data Archival

http://www.ceda.ac.uk

JASMIN paper

Lawrence, B.N., V.L. Bennett, J. Churchill, M. Juckes, P. Kershaw, S. Pascoe, S. Pepler, M. Pritchard, and A. Stephens. **Storing and manipulating environmental big data with JASMIN.** *Proceedings of IEEE Big Data 2013, p68-75*, doi:10.1109/BigData.2013.6691556

victoria.bennett@stfc.ac.uk

